
- HYPERCURVE -
An hybrid curve forge in Csound

Johann Philippe, Jacopo Greco d’Alceo⋆

No institute
johannphilippe@lilo.org

jacopo.grecodalceo@gmail.com

Abstract. HYPERCURVE is a new library designed to combine differ-
ent curve algorithms inside one function table. It has been thought as a
tool for musicians looking to shape precisely their envelopes and func-
tion tables. The library is exposed to several environments, like Csound,
Faust, Lua and C++.

Keywords: Curve, Perception, Csound, Shape, Envelope, Waveform,
Control

1 Introduction

As described by Weber and Fechner1, our sensation increases as the logarithm
of a surge in energy. If we look inside the history of musical notation the idea
of ”line” or ”curve” is almost always referred as a frequency parameter, where
these geometrical terms stand for a visual counterpoint construction of harmony.

Look at the famous answer Stravin-
sky gave to Robert Craft [2] about a
visual representation of his music.
How could we answer today?
Maybe we could add the graphical
score of Studie II by Stockhausen
where we can finally see more in detail
how the sound is emerging in space-
time, but we go further. Music evolu-
tion is directly consequent of notation,
instruments and thinking - the more

we dig into details, the more we find new paths.
This project is a study laboratory of curves in sound and music computing and it
would like to propose a new and easy instrument to transform sound morphology
and more.

⋆ Thanks to the curve master François Roux, professor of electroacoustic music com-
position at National Conservatory of Music and Dance in Lyon.

1 The so-called Weber–Fechner law.

2 Johann Philippe and Jacopo Greco d’Alceo

2 Curves and musical expression

2.1 Curves and computer music

Since a lot of programs already give the opportunity to build and manipulate
curves, an important question remains: why should someone create a new one?
Most of the existing software rely on some usual algorithm without exploring
the scientific world.
For example, Reaper2 gives a lot of attention to the fade in and the fade out
curves of volume and to the drawing automations. Yet, at this moment, Reaper
has only six types of curve algorithm.
One of the main quality of the Csound GEN system is pointing out the dif-
ference and the advantage of constructing and experiencing a curve with ears
rather than eyes - focusing on the singularity and the precision of the curve.
However, GEN routines currently allow one curve algorithm per function table.
But boundaries are built to be broken and that’s where an open, simple and
light-weight library of piecewise curves to use everywhere (i.e. in other media,
too) is needed start making his own path in our discussions. Such an hybrid
system has different advantages: sound samples management can be separated
from curves data which can be directly manipulated with virtual function on-
the-fly inside different environments and with a proper syntax. These functions
give a different approach to composition and consequently different results on
sound and push the limits where the most adventurous contemporary music is
evolving.

2.2 A perceptual equation

Since the emancipation of the graphical score, the problem of the interpretation
of curves has been transposed on a more visual question supposed to be resolved
by an interpreter (Iannis Xenakis, Cornelius Cardew, etc.). Yet, by the time when
computer becomes a creative tool that is integrated into the artistic process, we
could hint a new vision. The deeper we dig in a mathematical and natural
system, the more we discover about new ways to hear and compose. As far
as today we can appreciate the basic waveforms of a synthesizer, in further
researches, we could imagine the recognition of some specific and peculiar curves
in a pedagogical interest (e.g. a music theory of curves) and in artistic and
musical composition. Directly controlling curves suggest giving more power to
the genetic material of a sound, to its expanding resources and to add details on
his synthesis and direction in time and space.

3 Technical overview

HYPERCURVE is a new library designed to create piecewise hybrid curves. It
can be used to combine multiple curve segments - each based on a particular

2 The famous DAW software: https://www.reaper.fm/.

https://www.reaper.fm/

HYPERCURVE 3

curve algorithm - in a single curve table. In its first version, HYPERCURVE
provides 20 different curve algorithms that can be combined as several segments
inside a single curve table, as well as some mechanisms used to manipulate the
function table data.
These Hypercurves are use case agnostic: any curve can be used for any purpose:
wavetable, envelope, control function, data manipulation (...). This project was
created with the idea that every curve algorithm has its own signature and can
have a singular impact on the way we listen, depending on which parameters it
is used to control. Thus, it can be thought as a powerful and very configurable
composition tool.
HYPERCURVE follows two standard:

– It focuses on 2D horizontal curves. 3D or circular curves are not handled by
the library.

– Each curve base algorithm must respect its y starting point and destination.

Fig. 1. A random hybrid curve generated with HYPERCURVE

3.1 Basic principles of HYPERCURVE

HYPERCURVE is written in C++, and is available as a set of Csound opcode, a
Faust FFI interface, a Lua module, and directly through the C++ code. While its
core is independant from frontends, HYPERCURVE has been ported to Csound
using the Csound Plugin Opcode SDK [3].
Its design is pretty lightweight and simple, since most of the available functions
in frontends are only an interface to the core library. There are three main types
of components:

– hypercurve: an hybrid curve table

4 Johann Philippe and Jacopo Greco d’Alceo

– segment: describes a component of an hypercurve

– curve base: the curve algorithm used to build a segment. Each curve algo-
rithm function ends with _curve (e.g. hc_cubic_curve).

It has been decided to make the syntax as explicit as possible, so it can be easy
to use and write complex curves. In Csound, HYPERCURVE opcodes always
start with hc_ prefix.

Any HYPERCURVE can be described in Csound with the following syntax:

icurve = hc_hypercurve(itable_number, isize, iystart,

hc_segment(ifrac, idest1, hc_diocles_curve(0.51)),

hc_segment(ifrac, idest2, hc_cubic_curve()))

We see that the definition of an hypercurve necessarily uses three main compo-
nents.

– hc_hypercurve(itable_number, isize, iystart, segment1, [segment2, ...])

• itable_number: The index of the table. Like with ftgen, the table num-
ber for hc_hypercurve can be set to 0 to allow automatic indexing.

• isize: The number of samples of the curve.

• iystart: The y starting point of the curve.

• segment_list: The list of segments is currently limited to 64 segments,
which should be enough for most musical purposes (or could be increased
in the future).

– hc_segment(ifrac, idest, curve_base)

• ifrac: The fractional size of the segment (between 0 and 1). Usually,
the sum of all fractional sizes should be 1. Though, HYPERCURVE
automatically checks and resizes those fractional values if the sum is not
exactly 1.

• idest: The destination of the segment in the y axis.

• curve_base: The algorithm used to interpolate points of the segment.

– hc_cubic_curve is one of the available curve base algorithms. The available
algorithms are listed in the documentation [6].

3.2 Hypercurves examples

HYPERCURVE syntax aims to be as expressive as possible. Thus, it focuses
more on a textual description, rather than numeric parameters only, as used by
ftgen and f statements.
The following hypercurve is composed of two segments. It can be written in
Csound with the following code.

gicrv1 = hc_hypercurve(0, 16384, 0,

hc_segment(0.5, 1, hc_diocles_curve(0.51)),

hc_segment(0.5, 0, hc_tightrope_walker_curve(1.1,0.1)))

HYPERCURVE 5

Fig. 2. Diocles cissoid and tightrope walker segments

The curve will be displayed in the terminal with a similar ASCII display as
the on used for GEN function tables. It is also possible to write it as a png file
with hc_write_as_png to get a better visual representation, as shown above.

Let’s try a more complex one, with three segments.

gicrv2 = hc_hypercurve(0, 16384, 0,

hc_segment(0.1, 1, hc_tightrope_walker_curve(1.1,0.1)),

hc_segment(0.4, 0.2, hc_gaussian_curve(1, 1)),

hc_segment(0.5, 0, hc_kiss_curve()))

Fig. 3. Tightrope walker, gauss and kiss segments

6 Johann Philippe and Jacopo Greco d’Alceo

Each curve_base is different and may take a different set of parameters.
Those arguments are described in the documentation [6].

These curves, once created, can be used as any function table in Csound. Any
Csound opcode using GEN function tables can be passed an hypercurve instead.
A simple use case would be to use them directly as envelopes, reading the curve
with tablei opcode.

kenv = tablei:k(linseg(0, p3, 1), gicrv2, 1)

asig = vco2(0.3, p4) * kenv

outs asig, asig

When an hypercurve goes out of scope (if it is defined inside an instrument
for example), its memory will be freed by Csound FtDelete.

3.3 Curve manipulation tools

While HYPERCURVE was first thought as a way to create hybrid and finely
shaped curves, it quickly appeared that it could benefit from manipulation tools,
allowing to combine, concatenate, rotate and mirror curves. HYPERCURVE
provides standard mathematical operators + - * /, which are implemented in
Csound as opcodes: hc_add, hc_sub, hc_mult, hc_div. Those opcodes will
create a new hypercurve where each sample is the result of the operation on the
two source curves.

In order to manipulate the scale of a curve, HYPERCURVE provides the
hc_normalize opcode, which might be useful when using unsafe curve algo-
rithms (such as hc_cubic_spline_curve or hc_polynomial_curve). It also
provides a way to invert or mirror a curve algorithm with hc_mirror and
hc_invert.

imirrored = hc_hypercurve(0, 1024, 0,

hc_segment(1, 1, hc_mirror(hc_cubic_curve())))

In this example, the hc_mirror function is applied to the curve algorithm to
allow the cubic segment to be convex instead of concave. This function applies
a symmetry through a linear axis joining the starting point of the segment and
its destination. The hc_invert opcode applies a vertical symmetry.

This part of the library allowing to manipulate curves will be extended in
the near future, as we currently search for new intuitive and creative ideas and
algorithms to transform hypercurves.

4 Future of HYPERCURVE

The future development of this project is focused on two axis:

– Add more curve algorithms to provide a more complete and wide tool. This
axis has itself three branches. First, we plan to implement more existing
curve algorithms. Secondly, we would work on new curves approximations

HYPERCURVE 7

based on real world. Last but not least, some more curves could just be
abstractly created, using a graphic calculator to invent some new shapes
and curve behaviors.

– Add more manipulation functions, in order to make it a real musical curve
forge. Some abstract manipulations are in the road map, like a virtual three-
dimensional transformation, and some utility functions.

There also are a few pending interrogations, mostly related on the core de-
sign of HYPERCURVE in Csound implementation. Among those, one could
mention the automatic normalization of hypercurves in Csound, that would pre-
vent dangerous behaviors - since some curve algorithms behavior can be difficult
to predict (for example user defined polynomial curves or cubic spline curve).

5 The References Section

References

1. Fechner, G.: Element der Psychophysik, Breitskopf and Härtel, Leipzig (1860)
2. Craft, R., Stravinsky, I.: Conversations with Igor Stravinsky., Faber & Faber, (2011)
3. Csound Plugin Opcode SDK, https://github.com/csound/opcode_sdk
4. Mathcurve website, https://mathcurve.com/
5. Hypercurve Github, https://github.com/johannphilippe/hypercurve
6. Hypercurve Documentation, https://github.com/johannphilippe/hypercurve/

tree/main/doc

https://github.com/csound/opcode_sdk
https://mathcurve.com/
https://github.com/johannphilippe/hypercurve
https://github.com/johannphilippe/hypercurve/tree/main/doc
https://github.com/johannphilippe/hypercurve/tree/main/doc

	- HYPERCURVE - An hybrid curve forge in Csound
	Introduction
	Curves and musical expression
	Curves and computer music
	A perceptual equation

	Technical overview
	Basic principles of HYPERCURVE
	Hypercurves examples
	Curve manipulation tools

	Future of HYPERCURVE
	The References Section

